Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Societal adaptation to rising sea levels requires robust projections of the Antarctic Ice Sheet’s retreat, particularly due to ocean-driven basal melting of its fringing ice shelves. Recent advances in ocean models that simulate ice-shelf melting offer an opportunity to reduce uncertainties in ice–ocean interactions. Here, we compare several community-contributed, circum-Antarctic ocean simulations to highlight inter-model differences, evaluate agreement with satellite-derived melt rates, and examine underlying physical processes. All but one simulation use a melting formulation depending on both thermal driving (T ⋆) and friction velocity (u⋆), which together represent the thermal and ocean current forcings at the ice–ocean interface. Simulated melt rates range from 650 to 1277 Gt year−1 (m = 0.45 − 0.91 m year−1), driven by variations in model resolution, parameterisations, and sub-ice shelf circulation. Freeze-to-melt ratios span 0.30 to 30.12 %, indicating large differences in how refreezing is represented. The multi-model mean (MMM) produces an averaged melt rate of 0.60 m year−1 from a net mass loss of 842.99 Gt year−1 (876.03 Gt year−1 melting and 33.05 Gt year−1 refreezing), yielding a freeze-to-melt ratio of 3.92 %. We define a thermo-kinematic melt sensitivity, ζ = m/(T ⋆ u⋆) = 4.82 × 10−5 °C−1 for the MMM, with individual models spanning 2.85 × 10−5 to 19.4 × 10−5 °C−1. Higher melt rates typically occur near grounding zones where both T ⋆ and u⋆ exert roughly equal influence. Because friction velocity is critical for turbulent heat exchange, ice-shelf melting must be characterised by both ocean energetics and thermal forcing. Further work to standardise model setups and evaluation of results against in situ observations and satellite data will be essential for increasing model accuracy, reducing uncertainties, to improve our understanding of ice-shelf–ocean interactions and refine sea-level rise predictions.more » « lessFree, publicly-accessible full text available February 18, 2026
-
Abstract. The Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2) is a natural progression of previous and ongoing model intercomparison exercises that have focused on the simulation of ice-sheet and ocean processes in Antarctica. The previous exercises motivate the move towards realistic configurations, as well as more diverse model parameters and resolutions. The main objective of MISOMIP2 is to investigate the performance of existing ocean and coupled ice-sheet–ocean models in a range of Antarctic environments through comparisons to observational data. We will assess the status of ice-sheet–ocean modelling as a community and identify common characteristics of models that are best able to capture observed features. As models are highly tuned based on present-day data, we will also compare their sensitivity to prescribed abrupt atmospheric perturbations leading to either very warm or slightly warmer ocean conditions compared to the present day. The approach of MISOMIP2 is to welcome contributions of models as they are, including global and regional configurations, but we request standardized variables and common grids for the outputs. We target the analysis at two specific regions, the Amundsen Sea and the Weddell Sea, since they describe two different ocean environments and have been relatively well observed compared to other areas of Antarctica. An observational “MIPkit” synthesizing existing ocean and ice-sheet observations for a common period is provided to evaluate ocean and ice-sheet models in these two regions.more » « less
An official website of the United States government
